Stirling Engine Analysis Software

Stirling Engine Analysis Software

A beneficial optimization tool for Stirling engines
Stirling Engine Analysis Software

Stirling Engine Analysis Software

A beneficial optimization tool for Stirling engines

References

 The following list includes all the references we have used to develop Nlog software

 

W.R. Martini, Stirling Engine Design Manual, National Aeronautics and Space Administration (NASA) CR-168088, 1983 

.

D. Thimsen, Stirling Engine Assessment, in, 2002 

.

L. Yaqia, H. Yalinga, W. Weiweia, Optimization of solar-powered Stirling heat engine with finite-time thermodynamics, Renewable Energy, 36 (2011) 421–427 .

 

V.V. Toropov,
Multipoint approximation method in optimization problems with expensive
function values, Computational system analysis, (1992) 207-212

 

K. HIRATA,
Mechanical Loss Reduction of a 100 W Class Stirling Engine, in:  11th International Stirling Engine Conference, 2003, pp. 338-343.

 

Y. Timoumi, I. Tlili, S.B. Nasrallah, Performance optimization of Stirling Engines, Renewable energy, (2008) 2134-2144. 

 

K. Kraitong,
K. Mahkamov, Optimization of Low Temperature Difference Solar Stirling Engines
using Genetic Algorithm, in:  World Renewable Energy Congress, Sweden, 2011, pp. 3945-3952.

 

C.-L. Chen,
C.-E. Ho, H.-T. Yau, Performance Analysis and optimization of a solar powered
Stirling engine with heat transfer considerations, Energies, (2012) 3573-3585.

 

R.W. Dyson,
S.D. Wilson, R.C. Tew, Review of Computational Stirling Analysis Methods, in,
National Aeronautics and Space Administration (NASA), 2004.

 

C.-H. Cheng,
Y.-J. Yu, Numerical model for predicting thermodynamic cycle and thermal
efficiency of a beta-type Stirling engine with rhombic-drive mechanism,
Renewable Energy 35 ( 2010) 2590-2601.

 

K. Makhkamov,
D. Djumanov, Three-dimensional CFD modeling of a Stirling engine, in:  Stirling Engine Conference, Rome, Italy, 2003.

R.W. Fox, A.T. McDonald, P.J. Pritchard, Introduction to fluid mechanics, John Wiley & Sons, Inc., USA, 2004. 

 

H. Petersen,
The Properties of Helium: Density, Specific Heats, Viscosity and Thermal
Conductivity at Pressures from 1 to 100bar and from Room Temperature to about
1800K, in, 1970.

 

W.M. Kays, A.L. London, Compact heat exchangers, McGraw Hill, 1984. 

 

F.d. Monte, G.
Galli, F. Marcotullio, An analytical oscillating-flow thermal analysis of the
heat exchangers and regenerator in Stirling machines, in:  Energy Conversion Engineering Intersociety Conference, 1996, pp. 1421-1427.

 

F.d. Monte,
Thermal Analysis of the Heat Exchangers and Regenerator in Stirling Cycle Machines,
Journal of Propulsion and Power, (1997) 404-411.

 

S.Y. Zheng,
Oscillatory flow and heat transfer in Stirling engine regenerator, in:  PhD thesis, Case western reserve university, 1993.

 

S.M. Geng,
R.C. Tew, Comparison of GLIMPS and HFAST Stirling engine code predictions with
experimental data, in, 1992.

 

Puech P,
Tishkova V. Thermodynamic analysis of a Stirling engine including regenerator
dead volume. Renewable Energy. 2011;36 872-8.

 

Rogdakis ED,
Antonakos GD, Koronaki IP. Thermodynamic analysis and experimental
investigation of a Solo V161 Stirling cogeneration unit. Energy Conversion and
Management. (2012) 45 503-11.

 

Aksoy F, Cinar
C. Thermodynamic analysis of a beta-type Stirling engine with rhombic drive
mechanism. Energy Conversion and Management. 2013;75 319-24.

 

Tlili I,
Musmar SeA. Thermodynamic evaluation of a second order simulation for Yoke Ross
Stirling engine. Energy Conversion and Management. 2013;68 149-60.

 

Glushenkov M,
Sprenkeler M, Kronberg A, Kirillov V. Single-piston alternative to Stirling
engines. Applied Energy. 2012  97:743-8.

 

Rogdakis ED,
Bormpilas NA, Koniakos IK. A thermodynamic study for the optimization of stable
operation of free piston Stirling engines. Energy Conversion and Management.
2004:575–93.

 

Cheng C-H,
Yang H-S. Optimization of geometrical parameters for Stirling engines based on
theoretical analysis. Applied Energy. 2012;92 395-405.

 

Formosa F.
Coupled thermodynamic–dynamic semi-analytical model of free piston Stirling
engines. Energy Conversion and Management. 2011;52: 2098–109.

 

Cheng C-H, Yu
Y-J. Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism
via the combination of the thermodynamic and dynamic models. Renewable Energy.
2011;36:714-25.

 

Cheng C-H, Yu
Y-J. Numerical model for predicting thermodynamic cycle and thermal efficiency
of a beta-type Stirling engine with rhombic-drive mechanism. Renewable
Energy  2010;35:2590-601.

 

Cheng C-H, Yu
Y-J. Combining dynamic and thermodynamic models for dynamic simulation of a
beta-type Stirling engine with rhombic-drive mechanism. Renewable Energy.
2012:161-73.

 

Cheng C-H,
Yang H-S, Jhou B-Y, Chen Y-C, Wang Y-J. Dynamic simulation of thermal-lag
Stirling engines. Applied Energy. 2013;108 466–76
.